Incidence of leaf diseases in the agroforestry systems at Yurimaguas, Peru


  • L. Aragón Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Fitopatología, Lima, Peru.
  • H. Huarhua Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Fitopatología, Lima, Peru.
  • M. Cerna Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Fitopatología, Lima, Peru.
  • J. Flores Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Fitopatología, Lima, Peru.
  • F. Dueñas Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Horticultura, Docente, Lima, Perú.
  • C.P. Lao Universidad Nacional Agraria de la Selva, área de suelos, Facultad de Agronomía, Tingo María. Huánuco, Perú.
  • R. Solis Instituto de Investigación Peruano de la Amazonía, Iquitos, Perú.
  • J. Alegre Universidad Nacional Agraria La Molina, Facultad de Agronomía, Departamento Académico de Suelos, Docente, Lima, Perú.



Agroforestry Systems, Leaf spots, palm


An agroforestry system (SAF) is characterized by having a diversity of components, such as timber and non-timber forest species and crops, pastures, or a livestock production system. This diversity of components in the system reduces the intensity of diseases, e.g. foliar diseases. This study aimed to detect the fungal microorganisms associated with the leaf spots of plant species that are part of the agroforestry production systems of the Peruvian farmers from Yurimaguas and to determine the level of incidence of the leaf spots in the systems of agroforestry production. Different land cropping systems were implemented in the farms, such as palm (Bactris gasipaes) to produce palm hearts, cocoa (Theobroma cacao), and plantain (Mussa sp.). Also, silvopastoral systems with fast and slow growing timber species and cattle with pastures for grazing and reforestation in areas of secondary forests in a state of degradation. Prospecting, collecting, and determining the incidence of diseases in each farm were carried out and later they were identified with molecular methods using the primers ITS 1 and ITS 4. The symptoms predominantly observed were, leaf spots in cocoa (rootstock), palm, and plantain. Symptoms like wilting, decline, or rot were not observed. The incidence was evaluated in two collection periods (2018 and 2019). The fungi isolated from the leaf spots were Pestalotiopsis sydowiana and Colletotrichum siamense as causative agents of leaf spots on palm and cocoa, and Mycosphaerella fijiensis on plantain. When determining the incidence from April 2018 to October 2019, a decrease in this parameter (incidence) was observed for farms with palm, especially in those where the production system was improved by the use of fertilizants as a requirement of the crop. It was concluded that the highest intensity of foliar diseases occurred in agricultural systems with monoculture of palm with 100 % at the beginning of the evaluation, and for agroforestry systems in the silvopastoral prototype, it was only detected in a range of 0 % to 25 %.


Download data is not yet available.


Agrios, G. 1995. Fitopatología. Editorial Limusa S.A. México. 838 p.

Alfenas, A. C., Zauza, E. A. V., Mafia, R. G., & Assis, T. F. (2009) Clonagem e Doenças do Eucalipto. 2ª Ed. Viçosa, MG. Editora UFV.

Arroyo, C., Arauz, L. F. & Mora, J. (2004). Incidencia de enfermedades en pejibaye (Bactris gasipaes kunth) para palmito. Agronomía mesoamericana, 15, 61–68.

Banerjee, S., Baah-Acheamfour, M., Carlyle, C. N., Bissett, A., Richardson, A. E., Siddique, T., Bork, E.W., & Chang, S. X. (2015). Determinants of bacterial communities in Canadian agroforestry systems. Environmental Microbiology, 18(6), 1805–1816.

Barnett, H. (1999). Illustrated Genera of Imperfect Fungi. American Phytopathology Society. Fifth ed. USA. 389 p.

Belisário, R., Aucique-Pérez, C. E., Abreu, L. M., Salcedo, S. S., de Oliveira, W. M., & Furtado, G. Q. (2020). Infection by Neopestalotiopsis spp. occurs on unwounded eucalyptus leaves and is favoured by long periods of leaf wetness. Plant Pathology, 69, 194–204.

Díddier, M., & Castro, C. (2017). Sistemas agroforestales. Adaptación y mitigación en la producción de banano y cacao. Boletín N° 07. Un día en la Finca. Proyecto EUROCLIMA-IICA. San José de Costa Rica. 12 pp.

Ferrer, C., Colom, F., Frasés, S., Mulet, E., Abad, J. L., & Alió, J. L. (2001). Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. Journal of Clinical Microbiology, 39(8), 2873–2879.

French, E. & Hebert, T. (1982). Métodos de Investigación Fitopatológica. Número 43 de Serie de libros y materiales educativos. IICA. Costa Rica. 289p.

Huarhua, M., Flores, J., Acuña, R., & Apaza, W. (2018). Morphological and molecular identification of Phytophthora cinnamomi Rands as a causal agent of Crown and root rot in Blueberry (Vaccinium corymbosum ) in Peru. Peruvian Journal of Agronomy, 2(2), 14–21.

Huarhua, M., Aragón, L., Flores, J., Tsuzuki, R., & Arie, T. (2020). Primer reporte de Fusarium oxysporum f. sp. lycopersici raza 1 aislada de tomate (Solanum lycopersicum) de la Costa central del Perú. Scientia fungorum, 50, 1–12.

Inami, K., Kashiwa, T., Kawabe, M., Ishikawa, N., Rodriguez, E., Hozumi, T., Aragón, L., Cáceres De Baldarrago, F., Jiménez, M., Madadi, K., Peever, T., Teraoka, T., Kodama, M., & Arie, T. (2014). The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments, 29(2), 200–210.

James, R. S., Ray, J., Tan, Y. P., & Shivas, R. G. (2014). Colletotrichum siamense, C. theobromicola and C. queenslandicum from several plant species and the identification of C. asianum in the Northern Territory, Australia. Australasian Plant Dis. Notes, 9, 138.

Kumar, M., & Shukla, P. K. (2005). Use of PCR Targeting of Internal Transcribed Spacer Regions and Single-Stranded Conformation Polymorphism Analysis of Sequence Variation in Different Regions of rRNA Genes in Fungi for Rapid Diagnosis of Mycotic Keratitis. American Society for Microbiology, 43(2), 662–668.

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Análisis genético evolutivo molecular versión 7.0 para conjuntos de datos más grandes. Molecular Biology and Evolution, 33, 1870–1874.

Maharachchikumbura, S. S. N., Larignon, P., Hyde, K. D., Al-Sadi, A. M., & Liu, Z. Y. (2016). Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France. Phytopathologia Mediterranea, 55, 380−390.

Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., & Eibl, B. (2015). Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie técnica. Informe técnico No. 402. CATIE. Turrialba, Costa Rica. 461pp.

Morsbach, N., Rodrigues, A., Chaimsohn, F. P., & Treitny, M. R. (1998). Pupunha para palmito, Cultivo no Paraná. Instituto Agronómico do Paraná. Paraná, Brasil. 56p.

Mosquera-Mena, R. (2013). Relación de la asistencia técnica agropecuaria brindada a los pequeños productores con el estado fitosanitario de los huertos habitacionales de la zona de Urabá – Antioquia-Colombia. Entramado, 18, 224−230.

Müller, T., K. Strobel & A. Ulrich. (2006). Microorganisms in the Phyllosphere of Temperate Forest Ecosystems in a Changing Enviroment. In M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, & P. T. N. Spencer-Phillips (Eds.), Microbial Ecology of Aerial Plant Surfaces. (pp. 51–64). CABI.

Nair, P. K. (2014). Agroforestry : Practices and Systems. In N. K. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 270–282).

Norphanphoun, C., Jayawardena, R. S., Chen, Y., Wen, T. C., Meepol, W. & Hyde, K. D. (2019). Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. Mycosphere, 10(1), 531–578.

Peña, R. E. (1996). Plagas y enfermedades del chontaduro (Bactris gasipaes K). In R. Reyes., E. Peña., & J. Gómez (Eds.), Curso Cultivo e Investigación del chontaduro. Tumaco - Nariño, Colombia. Manual técnico Nº 5 (pp. 63–68). CORPOICA.

Pornsuriya, C., Chairin, T., Thaochan, N. & Sunpapao, A. (2020). Identification and characterization of Neopestalotiopsis fungi associated with a novel leaf fall disease of rubber trees (Hevea brasiliensis) in Thailand. Journal of Phytopathology, 1–12.

Proyecto de Recuperación de Ecosistemas Naturales en el Piedemonte Caqueteño. (1998). Sistemas Agroforestales. Convenio MINAMBIENTE – OIMT – CEUDE. Florencia, Caquetá. Información Técnica. 20pp.

Rep, M., Van Der Does, H. C., Meijer, M., Van Wijk, R., Houterman, P. M., Dekker, H. L., De Koster, C. G., & Cornelissen, B. J. C. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53(5), 1373–1383.

Saitoh K., Togashi K., Arie T., & Teraoka, T. (2006). A simple method for a mini- preparation of fungal DNA. Journal of General Plant Pathology, 72, 348–350.

Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.

White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications. (pp. 315–322). Academic, New York,