EXTRACTO ANTIOXIDANTE ENCAPSULADO POR ATOMIZACIÓN Y POR INCLUSIÓN MOLECULAR A PARTIR DE CÁSCARA Y SEMILLA DE CAMU CAMU (Myrciaria dubia)
DOI:
https://doi.org/10.21704/ac.v85i1.1946Palabras clave:
Myrciaria dubia, concentrado antioxidante, encapsulamiento, inclusión molecular, fenoles totalesResumen
Camu camu (Myrciaria dubia) is a fruit from the Peruvian Amazon, highly valued for its high content of vitamin C, which is concentrated in its pulp. Due to this nutritional characteristic, it is processed into juices and extracts. However, its industrialization generates a considerable amount of waste. Therefore, its utilization is vital to reduce environmental pollution. The content of phenolic compounds in the peel and seed of camu camu has been studied, indicating that factors such as drying temperature and the method of stabilizing the concentrated powder are key to preserving its antioxidant activity. The objective of the study was to evaluate two drying temperatures (50 and 65°C) on camu camu seeds and peels, analyzing their effect on the total phenol content and the efficacy of atomization encapsulation and molecular inclusion of the concentrated extract at the optimal temperature. Extraction was conducted out with food-grade ethanol solvent at a ratio of 1:40 (g/g), at 55°C for 30 minutes, then concentrated to 60% in a rotary evaporator. At 50°C, a lower of phenolics (4979.99 ± 94.24 mg gallic acid equivalent (GAE)/100g of sample) was found in the peel and seed mixture, and total anthocyanins in the peel (47.82 ± 3.93 mg cyanidin/100 g sample).. Atomization and molecular inclusion of the concentrated extract showed efficacy in in retaining the encapsulated total phenols. In conclusion, using a temperature of 50°C for drying has a lesser impact on the content of polyphenols. Additionally, two alternatives for stabilizing the extract are presented: with maltodextrin and molecular inclusion with cyclodextrin, both equally effectives.
Descargas
Referencias
Akter, S., Oh, S., Bang, J., & Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International, 44(7), 1728–1732.
Aree, T., & Jongrungruangchok, S. (2018). β-Cyclodextrin encapsulation elevates antioxidant capacity of tea: A closing chapter on non-epicatechins, atomistic insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers. 2018 Aug 15; 194, 24-33. https://doi.org/10.1016/j.carbpol.2018.04.016
Avilés-Betanzos, K. A., Cauich-Rodríguez, J.V., Ramírez-Sucre, M.O., & Rodríguez-Buenfil, I. M. (2023). Optimization of Spray-Drying Conditions of Microencapsulated Habanero Pepper (Capsicum chinense Jacq.) Extracts and Physicochemical Characterization of the Microcapsules” Processes, 11 (4), 1238. https://doi.org/10.3390/pr11041238
Bridle, P., & Timberlake, C. (1997). Anthocyanins as natural food colours-selected aspects. Food Chemistry, 58(1-2), 103-109. https://doi.org/10.1016/S0308-8146(96)00222-1
Calvay, H. (2009). Evaluación de la actividad antioxidante en pulpa concentrada de camu camu (Myrciaria dubia H.B.K. Mc. Vaugh) en dos estados de madurez en Tingo María. [Tesis para optar el título de Ingeniero en Industrias Alimentarias, Universidad Nacional Agraria de la Selva]. Repositorio UNAS. https://repositorio.unas.edu.pe/handle/20.500.14292/243
Chakraborty, S., Basu, S., Lahiri, A., & Basak, S. (2010). Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach. Journal of Molecular Structure, 977(1-3), 180–188. https://doi.org/10.1016/j.molstruc.2010.05.030
Conceição, N., Albuquerque, B. R., Pereira C., Corrêa, R. C. G., Lopes, C. B., Calhelha, R. C., Alves, M. J., Barros, L., Ferreira, I. C. F. R. (2019). By-products of camu-camu [Myrciaria dubia (Kunth) McVaugh] as promising sources of bioactive high added-value food ingredients: Functionalization of yogurts. Molecules, 25(1), 70. https://doi.org/10.3390/molecules25010070
Cunha-Santos, E. C. E., Rodrigues-Silva, C., da Silveira, T., Godoy, H. (2022). Optimization of phenolic compounds extraction of different parts of camu-camu fruit from different geographic regions. Plant Foods Hum. Nutr., 77(3), 340–344. 10.1007/s11130-022-00985-0.
De Azevêdo, J.C.S., Fujita, A., de Oliveira, E. L., Genovese, M. I., Correia, R. T. P. 2014. Dried camu-camu (Myrciaria dubia HBK McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934-940. https://doi.org/10.1016/j.foodres.2014.05.018
Dib Taxi, C. M, de Menezes, H. C., Santos, A. B., & Grosso, C. R. (2003). Study of the microencapsulation of camu-camu (Myrciaria dubia) juice. Journal of Microencapsulation, 20(4), 443–448. https://doi.org/10.1080/0265204021000060291
Fernandes, M. R. V., Dias, A. L. T., Carvalho, R. R., Souza, C. R. F., & Oliveira, W. P. (2014). Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Industrial Crops and Products, 60, 39–44. https://doi.org/10.1016/j.indcrop.2014.05.049
Fidelis, M., Santos, J. S., Escher, G. B., do Carmo, M. V., Azevedo, L., da Silva, M. C., Putnik, P., & Granato, D. (2018). In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food and Chemical Toxicology, 120, 479–490. https://doi.org/10.1016/j.fct.2018.07.043
García, P. (2022). Composición y sustancias bioactivas en subproductos de la industrialización de frutas. REVISTA FANUS, 3(3), 22-44.
García, VA., Borges, JG, Vanin, FM, & Carvalho, RA. (2020). Estabilidad de la vitamina C en polvo de acerola y camu-camu obtenido por secado por aspersión. Revista Brasileña de Tecnología de Alimentos, 23, e2019237. https://doi.org/10.1590/1981-6723.23719
Giusti, M., & Wrolstad, R. (2001). Anthocyanins. Characterization and measurement with UV visible spectroscopy. In: Giusti, M.M. and Wrolstad, R.E., Eds., Current Protocols in Food Analytical Chemistry, John Wiley and Sons, Inc., Hoboken, F1.2.1.-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00
Gonçalves da Rosa, C., Dellinghausen, C., Carlos, R., Ramos, M., Valmir, E., Rickes, S., Farias, R., & Kuhn, J. (2013). Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Industrial Crops and Products, 46, 138–146. https://doi.org/10.1016/j.indcrop.2012.12.053
Grigio, M., Ariel, E., Alves, E. Berlingieri, M., Cardoso, P., Ferreira, M., & Zanchetta, J. (2021). Bioactive compounds in and antioxidant activity of camu-camu fruits harvested at different maturation stages during postharvest storage. Acta Scientiarum. Agronomy, 43(1), e50997. https://doi.org/10.4025/actasciagron.v43i1.50997
Kalogeropoulos, N., Yannakopoulou, K., Gioxari, A., Chiou, A., & Makris, D. (2010). Polyphenol characterization and encapsulation in b-cyclodextrin of a flavonoidrich Hypericum perforatum (St John’s wort) extract. Food Science and Technology, 43(6), 882-889. https://doi.org/10.1016/j.lwt.2010.01.016
Kamimura, J. A., Santos, E. H., Hill, L. E., & Gomes, C. L. (2014). Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT - Food Science and Technology, 57(2), 701–709. https://doi.org/10.1016/j.lwt.2014.02.014
Laleh, G., Frydoonar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocianyn pigments in four Berberis species. Pakistan Journal and Nutrition, 5, 90-92. https://scialert.net/abstract/?doi=pjn.2006.90.92
López, L., Enriquez, S., & Gonzáles, A. (2021). Frutas tropicales y subproductos como fuente potencial de polisacáridos bioactivos. Biotecnia, 23(3),125-132. https://doi.org/10.18633/biotecnia.v23i3.1450
MINCETUR (Ministerio de Comercio Exterior y Turismo). (2021). Exportaciones de camu camu alcanzaron récord histórico en 2020. Nota de Prensa. https://www.gob.pe/institucion/mincetur/noticias/345752-exportaciones-de-camu-camu-alcanzaron-record-historico-en-2020
Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A., & Karathanos, V. (2007). Encapsulation of Olive Leaf Extract in β-Cyclodextrin. Journal of Agricultural and Food Chemistry, 55, 8088–8094. https://doi.org/10.1021/jf0709698
Özkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2018). .A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chemistry. doi:10.1016/j.foodchem.2018.07.20
Özkan, M., Yemenicioglu, A., Asefi, N., & Cemeroglu, B. (2002). Degradation Kinetics of Anthocyanins from Sour Cherry, Pomegranate, and Strawberry Juices by Hydrogen Peroxide. Journal of Food Science, 67(2), 525–529. https://doi.org/10.1111/j.1365-2621.2002.tb10631.x
Rahman, N., Shamsudin, R., Ismail, A., & Karim Shah, A. (2016). Effects of post-drying methods on pomelo fruit peels. Food Science and Biotechnology, 25(1), 85–90. DOI: 10.1007/s10068-016-0102-y
Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., & Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science & Technology, 108, 297–325. https://doi.org/10.1016/j.tifs.2021.01.008
Santos, I. L., Miranda, L. C. F., da Cruz, A. M., da Silva, L. H. M., & Amante, E. R. (2022). Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chemistry. 372, 131290. https://doi.org/10.1016/j.foodchem.2021.131290.
Sepúlveda, C., & Zapata, J. (2019). Efecto de la Temperatura, el pH y el Contenido en Sólidos sobre los Compuestos Fenólicos y la Actividad Antioxidante del Extracto de Bixa orellana L.. Información Tecnológica, 30(5),57-66. http://dx.doi.org/10.4067/S0718-07642019000500057
Shiozawa, R., Inoue, Y., Murata, I., & Kanamoto, I. (2018). Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian Journal of Pharmaceutical Sciences, 13, 24–33. https://doi.org/10.1016/j.ajps.2017.08.006
Simsek, T., Rasulev, B., Mayer, C., & Simsek, S. (2020). Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques. Molecules, 25(18), 4275. https://doi.org/10.3390/molecules25184275
Villanueva-Tiburcio, J., Condezo-Hoyos, A., & Ramírez Asquieri, E. (2010). Antocianinas, ácido ascórbico, polifenoles totales y actividad antioxidante, en la cáscara de camu-camu (Myrciaria dubia (H.B.K) McVaugh). Ciência e Tecnologia de Alimentos, 30(1), 151-160. https://doi.org/10.1590/S0101-20612010000500023
Zanatta, C. F., Cuevas, E., Bobbio, F. O., Winterhalter, P., & Mercadante, A. Z. (2005). Determination of anthocyanins from camu–camu (Myrciaria dubia) by HPLC–PDA, HPLC-MS and NMR. Journal of Agricultural Food and Chemistry, 53 (24), 9531-9535. https://doi.org/10.1021/jf051357v
Żyżelewicz, D., Oracz, J., Kaczmarska, M., Budryn, G., & Grzelczyk, J. (2018). Preparation and characterization of inclusion complex of (+)-catechin with β-cyclodextrin. Food Research International, 113, 263–268. DOI: https://doi.org/10.1016/j.foodres.2018.07.018
Zhong, Y., Li, W., Ran, L., Hou, R., Han, P., Lu, S., Wang, Q., Zhao, W., Zhu, Y., & Dong, J. (2020). Inclusion complexes of tea polyphenols with HP‐β‐cyclodextrin:Preparation, characterization, molecular docking, and antioxidant activity. Journal of Food Science, 85(4), 1105–1113. https://doi.org/10.1111/1750-3841.15083
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Silvia Virginia Melgarejo Cabello, Joseferik Calderón Pino, Shallinny Ramírez Vásquez, Vladimir Reátegui Isla, Jorge Miguel Pereda Ibañez, Diana Nolazco Cama, Eduardo Reynaldo Morales-Soriano
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.