Effect of particle size and temperature on aguaje (Mauritia flexuosa) peel flour and application in cookies

Authors

  • Silvia Virginia Melgarejo Cabello Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina. Av. La Molina s/n, La Molina, Lima – Perú.
  • Viviana Quintanilla Facultad de Ciencias Agropecuarias, Universidad Nacional de Ucayali.
  • Shallinny Ramírez Vásquez Terra Nuova, CENTRO PER LA SOLIDARIETÁ E LA COOPERAZIONE TRA I POPOLI.
  • Vladimir Reátegui Isla Terra Nuova, CENTRO PER LA SOLIDARIETÁ E LA COOPERAZIONE TRA I POPOLI.
  • Eduardo Reynaldo Morales-Soriano Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina. Av. La Molina s/n, La Molina, Lima – Perú. https://orcid.org/0000-0002-9863-9157

DOI:

https://doi.org/10.21704/ac.v84i2.1924

Keywords:

Mauritia flexuosa, dietary fiber, total polyphenols, aguaje byproductos

Abstract

Aguaje (Mauritia flexuosa) is one of the most consumed fruits in the Peruvian Amazon, mainly in the preparation of ice creams. One of the residues is the shell, which has sensory characteristics mainly of hardness. The main objective of this work was to evaluate the effect of temperature and particle size in obtaining water shell flour, and its application in cookies, in order to take advantage of this residue. The aguaje shell was separated, dried, ground, and roasted at different temperatures (120, 130, and 140°C), and then pulverized. The total polyphenol content of the ground and pulverized flours was measured. The flour with the highest polyphenol content was characterized in crude fiber and dietary fiber and selected to make cookies. These cookies were made with four levels of substitution (8, 10, 15 and 20%) and were evaluated for general acceptability by end consumers. Likewise, the compressive strength was measured instrumentally. The flour with the highest polyphenol content was toasted at 120°C and pulverized, and in the preparation of cookies it was possible to replace up to 15% with a good acceptability on average and an appropriate hardness. In conclusion, it can be affirmed that the lower roasting temperature and the reduction in particle size (pulverization) improve the extraction of polyphenols in the process of obtaining aguaje shell flour, with a high fiber content and that can be applied in biscuits with an acceptable sensory acceptance.

Downloads

Download data is not yet available.

References

Abreu-Naranjo, R., Paredes-Moreta, J.G., Granda-Albuja, G., Iturralde, G., González-Paramás, A.M., & Alvarez-Suarez, J.M. (2020). Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the Ecuadorian Amazon. Heliyon, 6(10), e05211. https://doi.org/10.1016/j.heliyon.2020.e05211

Aguero, S., Brítez, L., & Reckziegel, Y. (2022). Incorporación de harinas no convencionales derivadas de frutas en un producto de panificación. Revista Impacto En Ciencia y Tecnología, 2(1), 16–28. https://revistas.uni.edu.py/index.php/impacto/article/view/354

AOAC. (2019). Official Methods of Anlysis (21st ed.). Association of Official Analytical Chemist.

Arora, A., & Camire, M.E. (1994). Performance of potato peels in muffins and cookies. Food Research International, 27(1), 15–22. https://doi.org/10.1016/0963-9969(94)90173-2

Barboza, N.L., Cruz, J.M. dos A., Corrêa, R.F., Lamarão, C.V., Lima, A.R., Inada, N.M., Sanches, E.A., Bezerra, J. de A., & Campelo, P.H. (2022). Buriti (Mauritia flexuosa L. f.): An Amazonian fruit with potential health benefits. Food Research International, 159, 111654. https://doi.org/10.1016/J.FOODRES.2022.111654

Best, I., Casimiro-Gonzales, S., Portugal, A., Olivera-Montenegro, L., Aguilar, L., Muñoz, A.M., & Ramos-Escudero, F. (2020). Phytochemical screening and DPPH radical scavenging activity of three morphotypes of Mauritia flexuosa L.f. from Peru, and thermal stability of a milk-based beverage enriched with carotenoids from these fruits. Heliyon, 6(10), e05209. https://doi.org/10.1016/J.HELIYON.2020.E05209

Calderón, V., & Noriega, V. (2017). Obtención de harina de los residuos de frutas con mayor poder antioxidante y antimicrobiano (maracuyá, cacao y plátano) [Trabajo de Titulación para obtener el título de Ingeniero Químico]. Universidad Estatal de Guayaquil.

Cândido, T.L.N., Silva, M.R., & Agostini-Costa, T.S. (2015). Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chemistry, 177, 313–319. https://doi.org/10.1016/J.FOODCHEM.2015.01.041

Contreras, L. (2005). Desarrollo de una galleta dulce enriquecida con harina de quinua blanca (Chenopodium quinoa) utilizando diseño de mezclas [Tesis para optar el título de Ingeniero en Industrias Alimentarias]. Universidad Nacional Agraria La Molina.

Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., & Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008

Jovanović, A. A., Djordjević, V. B., Petrović, P.M., Pljevljakušić, D.S., Zdunić, G.M., Šavikin, K.P., & Bugarski, B.M. (2021). The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100328. https://doi.org/10.1016/J.JARMAP.2021.100328

Larrauri, J.A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3–8. https://doi.org/10.1016/S0924-2244(99)00016-3

Li, S., Zhu, L., Wu, G., Jin, Q., Wang, X., & Zhang, H. (2022). Relationship between the microstructure and physical properties of emulsifier based oleogels and cookies quality. Food Chemistry, 377, 131966. https://doi.org/10.1016/J.FOODCHEM.2021.131966

Lucini Mas, A., Brigante, F.I., Salvucci, E., Ribotta, P., Martinez, M.L., Wunderlin, D.A., & Baroni, M.V (2022). Novel cookie formulation with defatted sesame flour: Evaluation of its technological and sensory properties. Changes in phenolic profile, antioxidant activity, and gut microbiota after simulated gastrointestinal digestion. Food Chemistry, 389, 133122. https://doi.org/10.1016/J.FOODCHEM.2022.133122

Melgarejo, S. (2018). Uso de residuos sólidos de la industrialización del camu camu (Myrciaria dubia H.B.K. Mc Vaugh) para la extracción de compuestos fenólicos [Tesis para optar el grado de Magister Scientiae]. Universidad Nacional Agraria La Molina. https://hdl.handle.net/20.500.12996/3154

Resende, L.M., Franca, A.S., & Oliveira, L.S. (2019). Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chemistry, 270, 53–60. https://doi.org/10.1016/J.FOODCHEM.2018.07.079

Rudke, A. R., Mazzutti, S., Andrade, K.S., Vitali, L., & Ferreira, S.R.S. (2019). Optimization of green PLE method applied for the recovery of antioxidant compounds from buriti (Mauritia flexuosa L.) shell. Food Chemistry, 298, 125061. https://doi.org/10.1016/J.FOODCHEM.2019.125061

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/AJEV.1965.16.3.144

Downloads

Published

2023-11-15

Issue

Section

Artículo original / Research Article

How to Cite

Melgarejo Cabello, S. V., Quintanilla, V., Ramírez Vásquez, S., Reátegui Isla, V., & Morales-Soriano, E. R. (2023). Effect of particle size and temperature on aguaje (Mauritia flexuosa) peel flour and application in cookies. Anales Científicos, 84(2), 117-125. https://doi.org/10.21704/ac.v84i2.1924

Most read articles by the same author(s)