DO IBUPROFEN AND PHENOBARBITAL INFLUENCE DENGUE VECTOR TOLERANCE TO THE LARVICIDE TEMEFOS?

Authors

  • Richar J. Morales-Rodríguez Filiación actual: Universidad Nacional Agraria La Molina \ Facultad de Ciencias \ Departamento de Biología. Av. La Molina s/n, La Molina / Lima / Perú. Filiación cuando se desarrolló el trabajo: Universidad Nacional de Trujillo \ Facultad de Ciencias Biológicas \ E.A.P. Microbiología y Parasitología. Av. Juan Pablo II s/n, Trujillo / La Libertad / Perú https://orcid.org/0000-0002-7216-0658
  • Judith Roldán-Rodríguez Filiación actual: Universidad Nacional de Trujillo \ Facultad de Ciencias Biológicas \ Departamento de Microbiología y Parasitología. Av. Juan Pablo II s/n, Trujillo / La Libertad / Perú. https://orcid.org/0000-0002-1283-6951
  • Karina Salvador-Herrera Filiación actual: Centro De Salud Villa Primavera Sullana / Subregión de Salud Luciano Castillo Colonna. Villa Primavera s/n, Sullana / Piura / Perú. https://orcid.org/0000-0002-5922-8275

DOI:

https://doi.org/10.21704/rea.v21i1.1874

Keywords:

detoxification, Aedes aegypti, esterases, temephos, tolerance, insecticide, ibuprofen, phenobarbital

Abstract

 The release of pharmaceutical products has increased in terrestrial and aquatic ecosystems, putting the biota at risk, being able to generate multiple impacts on organisms, from modifying enzymatic expression to intergenerational impact on exposed organisms. This study evaluated the influence of phenobarbital and ibuprofen on tolerance to the insecticide temephos in two populations of Aedes aegypti, La Esperanza (LE) and Rockefeller (Rock). Larvae I were exposed to 17.7 μg/ml ibuprofen and 200 μg/ml phenobarbital until reaching stage III; subsequently, larvae mortality to temephos (0.005, 0.025 and 0.050 μg/ml) and the enzymatic activity of esterases were determined. Phenobarbital was found to favors a higher tolerance to 0.025 μg/ml of temephos, at 24 hours of exposure, in the LE population (44.00 ± 6.93% mortality) as opposed to Rock (97.33 ± 2.67% mortality); furthermore, it decreased enzymatic activity of alpha esterases in Rock and LE specimens (0.3892 ± 0.0756 and 0.1722 ± 0.0194, optical density, respectively). Also, ibuprofen reports a lower LD90 (0.024 μg/ml temephos) than the control (DL90 = 0.039 μg/ml temephos) at 2 hours of exposure with temephos. It is concluded that phenobarbital increases the tolerance of Aedes aegypti larvae to temephos, and ibuprofen stimulates the activity of alpha- and beta-esterases.

Downloads

Download data is not yet available.

References

Adeleye A.S., Xue J., Zhao Y., Taylor A.A., Zenobio J. E., Sun Y., Han Z., Salawu O.A. & Zhu Y. 2021. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. Journal of Hazardous Materials, 424-B: 127284. https://doi.org/10.1016/j.jhazmat.2021.127284.

Austin B. 1998. The effects of pollution on fish health. Journal of applied microbiology, 85(S1): 234S-242S. https://doi.org/10.1111/j.1365-2672.1998.tb05303.x.

Brattsten, L.B. 1990. Resistente mechanisms to carbamate and organophosphate insecticide (Chapter 3). In: . Green M.B., LeBaron H.M. & Moberg W.K. (eds.) Managing resistance to agrochemicals. 42-60. ACS Symposium Series Vol. 421. American Chemical Society. Washintong, D.C. DOI: 10.1021/bk-1990-0421.ch003.

Buser H.-R., Poiger T. & Müller M.D. 1999. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science & Technology, 33(15): 2529-2535. https://doi.org/10.1021/es981014w.

Costa-da-Silva A.L., Ioshino R.S., Araújo H.R.C.d., Kojin B.B., Zanotto P.M.d.A., Oliveira D.B.L., Melo S.R., Durigon E.L. & Capurro M.L. 2017. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PloS one, 12(2): e0171951. https://doi.org/10.1371/journal.pone.0171951.

Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., Van der Ploeg M., Van de Zee S.E. & Ritsema C.J. 2015. Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1): 57-65. https://doi.org/10.1016/j.iswcr.2015.03.002.

Hemingway J., Hawkes N.J., McCarroll L. & Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7): 653-665. https://doi.org/10.1016/j.ibmb.2004.03.018.

Hernando M.D., Mezcua M., Fernández-Alba A.R. & Barceló D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334-342. https://doi.org/10.1016/j.talanta.2005.09.037.

Hu X., Guo Y., Wu S., Liu Z., Fu T., Shao E., Rebeca C.-L., Zhao G., Huang Z., Gelbič I., Guan X., Zou S., Xu L. & Zhang L. 2017. Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti. Biocontrol Science and Technology, 27(2): 169-179. https://doi.org/10.1080/09583157.2016.1253828.

Kasai S., Komagata O., Itokawa K., Shono T., Ng L.C., Kobayashi M. & Tomita T. 2014. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Neglected Tropical Diseases, 8(6): e2948. https://doi.org/10.1371/journal.pntd.0002948.

Kotze A. 1995. Induced insecticide tolerance in larvae of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) following dietary phenobarbital treatment. Australian Journal of Entomology, 34(3): 205-209. https://doi.org/10.1111/j.1440-6055.1995.tb01319.x.

Kotze A.C., Ruffell A.P. & Ingham A.B. 2014. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae. Antimicrobial Agents and Chemotherapy, 58(12): 7475-7483. https://doi.org/10.1128/AAC.03333-14.

Marchlewicz A., Guzik U. & Wojcieszyńska D. 2015. Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment—sources, risks, biodegradation. Water, Air, & Soil Pollution, 226(10): Article number 355. https://doi.org/10.1007/s11270-015-2622-0.

Marchlewicz A., Guzik U., Hupert-Kocurek K., Nowak A., Wilczyńska S. & Wojcieszyńska D. 2017. Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1 (2015b). Environmental Science and Pollution Research, 24(8): 7572-7584. https://doi.org/10.1007/s11356-017-8372-3.

Muñiz-González A.-B. 2021. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. Environmental Toxicology and Pharmacology, 81: 103537. https://doi.org/10.1016/j.etap.2020.103537.

Murdoch R.W. & Hay A.G. 2015. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation, 26(2): 105-113. https://doi.org/10.1007/s10532-015-9719-4.

Parolini M. 2020. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of The Total Environment, 740: 140043. https://doi.org/10.1016/j.scitotenv.2020.140043.

Pereira A., Silva L., Laranjeiro C., Lino C. & Pena A. 2020. Selected pharmaceuticals in different aquatic compartments: Part II—Toxicity and environmental risk assessment. Molecules, 25(8): 1796. https://doi.org/10.3390/molecules25081796.

Poupardin R., Reynaud S., Strode C., Ranson H., Vontas J. & David J.-P. 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology, 38(5): 540-551. https://doi.org/10.1016/j.ibmb.2008.01.004.

Riaz M.A., Poupardin R., Reynaud S., Strode C., Ranson H. & David J.-P. 2009. Impact of glyphosate and benzo (a) pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquatic Toxicology, 93(1): 61-69. https://doi.org/10.1016/j.aquatox.2009.03.005.

Rodríguez M.M., Bisset J.A., Díaz C. & Soca L.A. 2003. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección con el insecticida organofosforado malation. Revista Cubana de Medicina Tropical, 55(2): 105-111. http://scielo.sld.cu/pdf/mtr/v55n2/mtr08203.pdf.

Rodríguez M.M., Bisset J.A., Molina D., Díaz C. & Soca L.A. 2001. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutatión-s-transferasa en Aedes aegypti. Revista Cubana de Medicina Tropical, 53(1):32-36. http://scielo.sld.cu/pdf/mtr/v53n1/mtr06101.pdf.

Sousa-Polezzi R.d.C. & Bicudo H.E.M.d.C. 2004a. Aedes aegypti (Diptera, Culicidae): a new system to study impaired biological effects of phenobarbital. Arq Ciênc Saúde, 11(2): 128-132. https://repositorio-racs.famerp.br/racs_ol/Vol-11-2/ac14%20-%20id%2054.pdf.

Sousa-Polezzi R.d.C. & Bicudo H.E.M.d.C. 2004b. Effect of phenobarbital on inducing insecticide tolerance and esterase changes in Aedes aegypti (Diptera: Culicidae). Genetics and Molecular Biology, 27(2): 275-283. https://www.scielo.br/j/gmb/a/T3Qt5PmDG4kXskQznNmCFGv/?format=pdf&lang=en.

Suwanchaichinda C. & Brattsten L. 2001. Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pesticide Biochemistry and Physiology, 70(2): 63-73. https://doi.org/10.1006/pest.2001.2544.

Suwanchaichinda C. & Brattsten L.B. 2002. Induction of microsomal cytochrome P450s by tire‐leachate compounds, habitat components of Aedes albopictus mosquito larvae. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 49(2): 71-79. https://doi.org/10.1002/arch.10009.

Villalva-Rojas O., Grande-Ortíz M., Ortiz J., Isasi J., Yantas D. & Fiestas V. 2007. Estudio de bioequivalencia del ibuprofeno genérico 400 mg tabletas. Revista Peruana de Medicina Experimental y Salud Publica, 24(4): 356-362. https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/1134.

WHO. 2005. Guidelines for laboratory and field testing of mosquito larvicides. WHO (World Health Organization). WHO/CDS/WHOPES/GCDPP/2005.13. https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS?sequence=1.

Willoughby L., Chung H., Lumb C., Robin C., Batterham P. & Daborn P.J. 2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochemistry and Molecular Biology, 36(12): 934-942. https://doi.org/10.1016/j.ibmb.2006.09.004.

Xie H., Chen J., Huang Y., Zhang R., Chen C.-E., Li X. & Kadokami K. 2020. Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: Occurrence, distribution, and ecological risk. Environmental Pollution, 267: 115436. https://doi.org/10.1016/j.envpol.2020.115436.

Downloads

Published

2022-07-03

Issue

Section

Artículos originales

How to Cite

Morales-Rodríguez, R. J. ., Roldán-Rodríguez , J. ., & Salvador-Herrera, K. . (2022). DO IBUPROFEN AND PHENOBARBITAL INFLUENCE DENGUE VECTOR TOLERANCE TO THE LARVICIDE TEMEFOS?. Ecología Aplicada, 21(1), 49-55. https://doi.org/10.21704/rea.v21i1.1874

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 9 10 11 > >>