Antagonism of Trichoderma spp. from the Peruvian Central Rainforest on Phytophthora capsici and Effects on Plant Growth

Authors

DOI:

https://doi.org/10.21704/pja.v8i1.1982

Keywords:

Trichoderma koningiopsis, Trichoderma lentiforme, Trichoderma harzianum

Abstract

The genus Trichoderma is primarily recognized for its role as a biocontrol agent against various plant pathogens. Among the actions exhibited by this genus is its activity against Phytophthora capsici (P.c.), the causal agent of crown rot, foliar blight, and fruit rot in pepper cultivation. This study evaluated the antagonistic activity of T. koningiopsis and T. lentiforme against P. capsici. These species, isolated from the Peruvian central rainforest, were previously identified through morphological and molecular methods. The research was conducted in two phases: 1) In the in vitro phase, the treatments included isolates of T. koningiopsis, T. lentiforme, and T. harzianum, each tested both individually and against P. capsici, along with a positive control (+P.c.); 2) For the in vivo phase a negative control (-P.c.) was included. The in vitro antagonism evaluation featured a dual plate confrontation assay between Trichoderma spp. and P. capsici on Potato Dextrose Agar (PDA) medium, wherein the percentage of radial growth inhibition (PRGI) and growth rate were assessed. In the greenhouse, bell pepper seedlings cv ‘Piquillo’ were inoculated with 20 mL of a Trichoderma spp. conidia suspension (108 spores/mL) at transplanting, 14, and 28 days after transplanting (dat).  P. capsici was inoculated at 28 dat near the base of the plant using three grains (0.27 g) of previously colonized wheat. The experiments followed a completely randomized design (CRD) with Tukey’s mean comparison test at a 0.05 significance level. The evaluated variables included plant height (cm), incidence (%), severity (%), fresh weight (g), and dry weight (g). The in vitro antagonism results showed that T. koningiopsis and T. lentiforme exhibited PRGI values of 38.08 % and 37.91 %, respectively, against P. capsici. In the greenhouse assay, the bell pepper plants co-inoculated with T. lentiforme and P. capsici exhibited higher values in plant height (21.11 cm), root length (11.02 cm), and fresh weight (1.4 g). Additionally, the degree of foliar and root severity in all treatments with Trichoderma spp. and P. capsici was lower (Grade 0 to Grade 2), unlike the treatment inoculated solely with the pathogen (Grade 3 to Grade 4). In conclusion, this study demonstrates the potential of T. koningiopsis and T. lentiforme as biocontrol agents against P. capsici in pepper crops.

nation organic manure (sheep) with mineral fertilizer in percentage on the growth of maize and some soil properties .

Method of work :The experiment carried out in In the fields of the Iraqi Agricultural Research Department - Dabouni Station in (2021) with the treatment groups as follows: Group

 (Control, no manure, no fertilizer (T1) Sheep fertilizer, 20 tons ha−1 [SF] (T2) Mineral fertilizer

( N.P.K ) 320 kgN/ha ,100kg P2O5/ha and 120Kg K2O/ha (NPK100%) (T3) Mixture of sheep (20 tons/ha + and mineral fertilizer NPK 320 kgN/ha ,100kg P2O5/ha and 120Kg K2O/ha, 5) Sheep manure + 25%, N.P.K [SMF25%] (T4) Sheep manure+ 50%, N.P.K [SMF50%] (T5)6) Sheep manure + 75%, N.P.K  [SMF75%] (T6) Sheep manure +100% N.P.K  [SMF100%] (T7)

The experiment laid out in Randomized Complete Block Design (RCBD), with three replications.

The results : experiment showed that the combination of organic fertilizer and mineral fertilizer [SMF100%](T7) gave significant differences in average of plant length growth (161) cm compared to mineral fertilizer (109) cm and organic fertilizer (99) cm respectively, also (T7) gives  significant  differences  in root length ,ear length leaf area,500 grain  weight ,biological yield, Grain yield) and  content of organic matter in the soil, but in the same significant  of fertilization treatment [SMF75%](T6)

The treatment [Mineral F](T3) gives significant difference in the value of EC (4.2) Dsm-1                                                                 and PH (7.5) of the soil Compared to other treatments in the experiment .

Conclusions & Recommendations : We can be concluded from blending organic fertilizer with mineral fertilizer to obtain good quality, growth and high productivity of maize and soil fertility and to reduce the amount of mineral fertilizer. Then we recommend that it can be applied by farmers  by using other varieties of maize and in other locations to confirm the results

Downloads

Download data is not yet available.

References

Alfiky, A., & Weisskopf, L. (2021). Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. Journal Fungi, 7 (1), 61. https://doi.org/10.3390/jof7010061

Andrade-Hoyos, P., Luna-Cruz, A., Osorio-Hernández, E., Molina-Gayosso, E., Landero-Valenzuela, N., & Barrales-Cureño, H. J. (2019). Antagonismo de Trichoderma spp. vs hongos asociados a la marchitez de chile. Revista mexicana de ciencias agrícolas, 10(6), 1259-1272. https://doi.org/10.29312/remexca.v10i6.1326

Athafah, A., Sabah, I., Li, B., & Zhang, J. (2020). A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biological Control, 145, 104261. https://doi.org/10.1016/j.biocontrol.2020.104261

Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, F. (2020). Bioformulación de Trichoderma harzianum en sustrato sólido y efectos de su aplicación sobre plantas de pimiento. Revista De La Facultad De Agronomía, 119(1), 037. https://doi.org/10.24215/16699513e037

Bell, D. K., Wells, H. D., & Markham, C. R. (1982). In vitro Antagonism of Trichoderma species Against Six Fungal Plant Pathogens. Phytopathology, 72(4), 379-382. https://doi.org/10.1094/Phyto-72-379

Candelero, D. J., Cristóbal, A. J., Reyes, R. A., Tun, S. J. M., Gamboa, A. M. M., & Ruíz, S. E. (2015). Trichoderma spp. promotoras del crecimiento en plántulas de Capsicum chinense Jacq. y antagónicas contra Meloidogyne incognita. Phyton (Buenos Aires), 84(1), 113-119. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-56572015000100016&lng=es&tlng=es

Cherkupally, R., Amballa, H., & Narasimba, B. (2017). In vitro screening for enzymatic activity of Trichoderma species for biocontrol potential. Annals of Plant Sciences. 6(11), 1784-1789. http://dx.doi.org/10.21746/aps.2017.6.11.11

Cruz, M., & Cisternas, V. (1998). Control integrado de Phytophthora capsici en pimiento. Efecto de hongos antagonistas sobre el crecimiento de las plantas. Agricultura Técnica, 58(2), 81–92. https://biblioteca.inia.cl/handle/20.500.14001/39223

Cuenca, J., Quevedo, J., Tuz, I., & Chabla, J. (2022). Trichoderma spp: Propagation, dosage, and application in maize crop (Zea mays L.). Revista ciencia y agricultura, 19(3). https://doi.org/10.19053/01228420.v19.n3.2022.14692

Corvera, L. (2020, September 28). Capsicum: 2020 Las exportaciones crecen en lo que va del año. Redagrícola. https://redagricola.com/capsicum-2020-las-exportaciones-crecen-en-lo-que-va-del-ano/

Danger, L., Jiménez, C., & González, N. (2000). Efectividad de Paecilomyces lilacinus y Trichoderma harzianum sobre el crecimiento de posturas de tomate (Solanum lycopersicum L.) y el control de Meloidogyne incognita en fase de semillero. https://catalogosiidca.csuca.org/Record/UNANI.054337

Eraso-Insuasty, C., Acosta-Rodríguez, J., Salazar-González, C., & Betancourth-García, C. (2014). Evaluación de cepas de Trichoderma spp. para el manejo del amarillamiento de arveja por Fusarium oxysporum. Ciencia y Tecnología Agropecuaria, 15(2), 237–249. http://www.redalyc.org/articulo.oa?id=449945182005

Ezziyyani, M., Pérez Sánchez, C., Requena, M. E., Rubio, L., & Candela-Castillo, M. E. (2004). Biocontrol por Streptomyces Rochei-Ziyan, de la podredumbre del pimiento (Capsicum annum) causada por Phytophthora capsici. Anales de Biología, (26), 61–68. Recovered from: https://revistas.um.es/analesbio/article/view/30471

Ezziyyani, M., Sid-Ahmed, C., Pérez-Sanchez, M. E., Requena, M., & Candela M. (2006). Control biológico por microorganismos antagonistas. Revista Horticultura, 191(3), 8–15. https://www.horticom.com/revistasonline/horticultura/rh191/08_15.pdf

Granke, L. L., Quesada-Ocampo, L., Lamour, K., & Hausbeck, M. K. (2012). Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant disease. 96,1588-1600. https://doi.org/10.1094/PDIS-02-12-0211-FE

Harman, G. E. (2000). Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease. 84, 377–393. https://doi.org/10.1094/PDIS.2000.84.4.377

Harman, G., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev. Microbiol. 2, 43-56. https://www.redalyc.org/articulo.oa?id=61222115

Hernández, P. B. (2022) Caracterización de aislados nativos de Trichoderma spp para el control de hongos de suelo. [Master thesis, Universidad Nacional Agraria]. UNAN repository.

Ho, H. (1981). Synoptic Keys to the Species of Phytophthora. Mycologia, 73(4), 705. https://www.researchgate.net/publication/271781949_Synoptic_Keys_to_the_Species_of_Phytophthora

Huallanca, C. A., & Cadenas, C. A. (2014). Control de Phytophthora capsici Leonian en Capsicum annuum cv. Papri king con fungicidas, fertilizantes y biocontroladores. Anales Científicos, 75(1), 130-137. https://doi.org/10.21704/ac.v75i1.943

Hulse-Kemp, A., Ashrafi, H., Plieske, J., Lemm, J., Stoffel, K., Hill, T., Luerssen, H., Pethiyagoda, C. L., Lawley, C. T., Ganal, M. W., & Van Deynze, A. (2016). A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Horticulture research., 3, 16036. https://doi.org/10.1038/hortres.2016.36

Infante, D., & Martínez, B. (2019). Actividad antagónica de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre aislados de diferentes grupos anastomósicos de Rhizoctonia solani Kühn. Revista de Protección Vegetal, 34(2), 1–7. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522019000200008&lng=es&tlng=es

Kamala, T., & Indira S. (2014). Molecular characterization of Trichoderma harzianum strains from Manipur and their biocontrol potential against Pythium ultimum. Int J Curr Microbiol App Sci, 3(7), 258–270. https://www.ijcmas.com/vol-3-7/Th.Kamala%20and%20S.Indira.pdf

Kim, E., & Hwang, B. (1992). Virulence to Korean pepper cultivars of isolates of Phytophthora capsici from different geographic areas. Plant disease, 76, 486-489. https://doi.org/10.1094/PD-76-0486

Lamour, K., Stam, R., Jupe, J., & Huitema, E. (2012). The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol. 13(4), 329–337. https://doi.org/10.1111/j.1364-3703.2011.00754.x

Larios, E., Valdovinos, J., Chan W., García, F., Manzo G., & Buenrostro M. (2019). Biocontrol De Damping off y promoción del Crecimiento Vegetativo en Plantas de Capsicum chinense (Jacq) con Trichoderma spp. Revista Mexicana De Ciencias Agrícolas, 10(3), 471-483. https://doi.org/10.29312/remexca.v10i3.332

Lewis, J. A., & Papavizas, G. C. (1985). Characteristics of alginate pellets formulated with Trichoderma and Gliocladium and their effect on the proliferation of the fungi in soil. Plant Pathology, 34(4), 571–577. https://doi.org/10.1111/j.1365-3059.1985.tb01409.x

Ministerio de Desarrollo Agrario y Riego [MIDAGRI] (2021). Perú cuenta con más de 350 variedades de ajíes, rocotos y pimientos registradas y cultivadas en 24 regiones. https://www.gob.pe/institucion/midagri/noticias/514940-midagri-peru-cuenta-con-mas-de-350-variedades-de-ajies-rocotos-y-pimientos-registradas-y-cultivadas-en-24-regiones

Mousumi Das, M., Haridasb, M., & Sabu, A. (2019). Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatalysis and Agricultural Biotechnology, 17, 177–183. https://doi.org/10.1016/j.bcab.2018.11.021

Moya, J. D., García, S., Morel, M., Avilés, E., Núñez, P., & Matos, L. (2022). Efectividad de cepas nativas de Trichoderma spp. en el control de Fusarium, Phytophthora, Rhizoctonia y Pythium en ají (Capsicum annuum L.) en ambiente protegido. APF. Revista Agropecuaria Forestal, 10(2), 41–56. https://www.sodiaf.org.do/apf/index.php/apf/article/view/129

Nawaz, K., Shahid, A., Bengyella, L., Subhani, M., Ali, M., Anwar, W., Iftikhar, S., & Ali, S. (2018). Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Scientia Horticulturae, 239, 242–252. https://doi.org/10.1016/j.scienta.2018.05.048

Olmedo, V., & Casas, S. (2014). Molecular Mechanisms of Biocontrol in Trichoderma spp. and their Applications in Agriculture. Biotechnology and Biology of Trichoderma, 429–453. https://doi.org/10.1016/B978-0-444-59576-8.00032-1

Parada-Rojas, C., Granke, L., Naegele, R., Hansen, Z., Hausbeck, M., Kousik,C., McGrath, M., Smart, C., & Quesada-Ocampo, L. (2021). A diagnostic guide for Phytophthora capsici infecting vegetable crops. Plant Health Progress, 22(3), 404-414. https://doi.org/10.1094/PHP-02-21-0027-FI

Quintanilla, O. I. (2024). Panorama del Mercado Internacional y Nacional de Capsicum. Centro de Investigación de Economía y Negocios Globales (CIEN). https://www.cien.adexperu.org.pe/panorama-del-mercado-internacional-y-nacional-de-capsicum/

Quiñones-Díaz, X. E., Muñoz-Concha, D., & Nuñez-Carrasco, L. (2022). El cultivo del ají (Capsicum spp.) como patrimonio cultural campesino: análisis exploratorio. RIVAR, 9(26), 89-106. https://doi.org/10.35588/rivar.v9i26.5531

Quispe-Quispe, E., Moreira-Morrillo, A., & Garcés-Fiallos, F. (2022). A review about biocontrollers of Phytophthora capsici and its impact on Capsicum plants: A perspective from outside to inside the plant. Scientia Agropecuaria, 13(3), 275-289. https://dx.doi.org/10.17268/sci.agropecu.2022.025

Ríos, R. E. L. (2014). Caracteres principales, ventajas y beneficios agrícolas que aporta el uso de Trichoderma como control biológico. Revista Científica Agroecosistemas, 2(1). https://aes.ucf.edu.cu/index.php/aes/article/view/40

Rodríguez, D., & Vargas, J. (2022). Efecto de la inoculación con Trichoderma sobre el crecimiento vegetativo del tomate (Solanum lycopersicum). Agronomía Costarricense, 46(2), 47-60. https://doi.org/10.15517/rac.v46i2.52045

Romero, O. R., Amaro, J. L., Huato, M. Á., Ita, M. D., Rivera, A. A., & Lara, M. H. (2017). Biopreparados de Trichoderma spp. para el control biológico de Phytophthora capsici en el cultivo de tomate de Puebla, México. Itea-informacion Tecnica Economica Agraria, 113, 313-324. https://doi.org/10.12706/itea.2017.019

Romero, V., Aragón, L., Casas, A., & Apaza, W. (2022). Efficiency of Trichoderma viride as a biocontrol agent for Phytophthora capsici in Pepper (Capsicum annuum L.). Peruvian Journal of Agronomy, 6(3), 229–238. https://doi.org/10.21704/pja.v6i3.1975

Sandoval, I., & López, M. (2001). Hiperparasitismo de Trichoderma harzianum, T. viride y T. pseudokoningii sobre diferentes hongos fitopatógenos. Fitosanidad, 5(1), 40-41. http://www.redalyc.org/articulo.oa?id=209118258010

Sid, A., Pérez, C., Egea, C., & Candela, M. (2006). Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici on pepper plants. Plant Pathology, 48(1), 58–65. https://doi.org/10.1046/j.1365-3059.1999.00317.x

Swapan, K., Sujoy, P., & Subhankar, B. (2022). Identification and pathogenicity of Alternaria alternata causing leaf blight of Bacopa monnieri (L.) Wettst. and its biocontrol by Trichoderma species in agrifields -an ecofriendly approach. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100406. https://doi.org/10.1016/j.jarmap.2022.100406

Uddin, M., Rahman, U., Khan, W., Uddin, N., & Muhammad, M. (2018). Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Phythium ultimum and Phytopthora capsici. Egypt J Biol Pest Control, 28, 32. https://doi.org/10.1186/s41938-018-0032-5

Vallejo-Gutiérrez, A. J., Mejía-Carranza, J., García-Velasco, R., & Ramírez-Gerardo, M. G. (2018). Response of Capsicum pubescens genotypes to damage caused by the fungal wilt complex. Mexican Journal of Phytopathology, 37(1). http://dx.doi.org/10.18781/R.MEX.FIT.1809-3

Vélez-Olmedo, J., Saltos, L., Corozo, L., Samay, B., Vélez-Zambrano, S., Arteaga, F., García, M., & Pinho, D. (2020). First Report of Phytophthora capsici Causing Wilting and Root and Crown Rot on Capsicum annuum (Bell Pepper) in Ecuador. Plant Disease, 14(7), https://doi.org/10.1094/PDIS-11-19-2432-PDN

Viracocha, P., & Cadena, F. (2023). Incorporación de Trichoderma harzianum para la reducción del ataque de la tristeza del pimiento (Phytophthora capsici). Revista De Investigación E Innovación Agropecuaria y de Recursos Naturales, 10(3), 56-63. https://doi.org/10.53287/iymb3882sv61c

Volynchikova, E., & Ki, D. K. (2022). Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops. Mycobiology. 50(5), 269-293. https://doi.org/10.1080/12298093.2022.2136333

Wyndham, M. T., Elad, Y., & Baker, R. (1986). A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology, 76(5), 518-539. http://dx.doi.org/10.1094/Phyto-76-518

Downloads

Published

2024-04-29

How to Cite

Teves Anchivilca, P. I., Felix Vasquez, Y., Gonzales Borda, F. F., León Modeneci, G. R. ., Honorio Quispe, K. L., Llanos Melo, A. K., & Gonzales Miranda, M. del C. (2024). Antagonism of Trichoderma spp. from the Peruvian Central Rainforest on Phytophthora capsici and Effects on Plant Growth. Peruvian Journal of Agronomy, 8(1), 30-43. https://doi.org/10.21704/pja.v8i1.1982