Effect of genotype on chemical composition and fatty acid profile of guinea pig carcass (Cavia porcellus L.)

Authors

  • Víctor Hidalgo Lozano Universidad Nacional Agraria La Molina, Facultad de Agronomía, Av. La Molina s/n, Lima-Perú.
  • Carlos Vílchez-Perales Universidad Nacional Agraria La Molina, Facultad de Agronomía, Av. La Molina s/n, Lima-Perú.

DOI:

https://doi.org/10.21704/pja.v7i2.2021

Keywords:

guinea pig, genotype, deposition of chemical compounds, profile of fatty acids, polyunsaturated fatty acids

Abstract

The aim of this study was to evaluate the effect of the genotype on the deposition curve of the chemical components and fatty acid profile of carcass of guinea pigs of Peru and Cieneguilla genotypes. Forty-eight male guinea pigs (24 per genotype), randomly distributed in pens with three animals each per genotype were used. Management and feeding protocols, up to 32 wk of age, were similar for both genotypes. The deposition curve of the chemical components was determined using the Gompertz equation. Data of the fatty acid profile were submitted to analysis of varianza under a Randomized Complete Block Design using the SAS Studio Environment software, with a significance level of α = 0.05. The results showed that the asymptote of the moisture and protein content in the carcass of the Peru genotype was higher (P < 0.05) than that of Cieneguilla genotype, but not in the fat content, which was similar (P > 0.05) in both genotypes.  Likewise, the function of the relationship between the maximum deposition rate of the three chemical components and the content at adulthood (k) was similar (P > 0.05) in the two genotypes. The age of maximum moisture deposition rate and total protein at the inflection point (ti) are lower than the maximum fat deposition rate in both genotypes. Regarding the fatty acid profile of the carcass, the content of total and individual saturated fatty acids was similar (p > 0.05) in the two genotypes was observed. However, the content of total monounsaturated fatty acids and oleic acid (C18:1C) were higher (p < 0.05) in the Cieneguilla genotype, while the content of total polyunsaturated fatty acids, linoleic and linolenic acids were higher (P < 0.05) in the carcass of guinea pigs of the Peru genotype. In conclusion, the asymptote of moisture content and crude protein in adulthood was higher (p < 0.05) in the Peru genotype. In saturated fatty acid content, there were no statistical differences between both genotypes, but the Cieneguilla genotype contains a higher (p < 0.05) percentage of monounsaturated fatty acids and the Peru genotype has a higher (p < 0.05) percentage of polyunsaturated fatty acids.

 

Downloads

Download data is not yet available.

References

Andersen, S., & Pedersen, B. (1996). Growth and food intake curves for group-housed gilts and castrated male pigs. J. Ani. Sci., 63, 457–464.

Anwar, J. A., Kegan, R. J. (2020). Nutritive value and physical properties of neo-Tropical rodent meat–with emphasis on the capybara (Hydrochoerus hydrochaeris). Animals, 10(11), 2134. https://doi.org/10.3390/ani10112134

Association of Official Analysis Chemists (2000). Official Methods of Analysis. 17th ed. Assoc. Off. Anal. Chm., Gainthersburg,MD.

Association of Official Analysis Chemists International (1990). Official Methods of Analysis Vol II. 15th ed. Assotiation of official Analytical Chemists, Washintong, DC.

Ayala, V. C. (2018). Crecimiento y desarrollo de los mamíferos domésticos. Instituto de investigación Agropecuarias y de Recursos naturales. Facultad de Agronomía, Universidad Mayor de San Andrés, Bolivia. Scielo.org.bo/pdf/riiarn/v5nEspecial/v5_a05.pdf

Baker, J. F., Tedeschi, L. O., Fox, D. G., Henning, W. R., & Ketchen, D. J. (2006). Using ultrasound measurements to predict body composition of yearling bulls. Journal of Animal Science, 84(10), 2666–2672. https://doi.org/10.2527/jas.2006-006

Betancourt, L., & Díaz, G. J. (2014). Fatty acid profile differences among the muscle tisue of three rodents (Hydroahoetus hidrochaeris, Cuniculus paca and Cavia porcellus) and on Logomorph (Oryctolagus cuniculus). Journal of Food and Nutrition Research, 2(10) 744–748. https://doi.org/10.12691/jfnr-2-10-14

Casas, G. A., Rodríguez, D., & Afanador, T. G. (2010). Propiedades matemáticas del modelo de Gompertz y su aplicación al crecimiento de los cerdos. Revista Colombiana de Ciencias Pecuarias, 23(3) 349–358. https://www.redalyc.org/pdf/2950/295023477010.pdf

Chauca, F. L., Muscari, J., & Higaona, R. (2008). Investigación en cuyes. (Technical report APPA 1994-2007, Tomo II) https://repositorio.inia.gob.pe/bitstream/20.500.12955/303/1/Investigaciones_en_cuyes.pdf

Chauca, F. L (2022). Desarrollo del mejoramiento genético cuyes en el Perú. Formación de nuevas razas. Anales Científicos, 83(2), 109–125. https://doi.org/10.21704/ac.v83i2.1879

Clawson, A. J., Garlich, J. D., Coffey, M. T., & Pond, W. G. (1991). Nutritional, physiological, genetic, sex, and age effect on fat-free dry matter composition of the body in avian, fish, and mammalian species: a review. Journal of animal science, 69(9), 3617–3644. https://doi.org/10.2527/1991.6993617x

Cordain, L., Walkins, B. A., Florant, G .L., Kelher, M., Rogers, L., & Li, Y. (2002). Fatty acid analysis of wild ruminant tissues; evolutionary implications for reducing diet. related chronic disease. European Journal of Clinical Nutrition, 56(3), 181–191 https://doi.org/10.1038/sj.ejcn.1601307

Do, D. N., & Miar, Y. (2020). Evaluation of Growth Curve Models for Body Weight in American Mink. Animals, 10(1), 22. https://doi.org/10.3390/ani10010022

Enser, M., Hallett, K., Hewitt, B., Fursey, G. A. J., & Wood, J. D. (1996). Fatty acid content and composition of English beef, lamb and pig at retail. Meat Science 42(4), 443–456. https://doi.org/10.1016/0309-1740(95)00037-2

Fernandes, H. J., Tedeschi, L. O., Paulino, M. F., & Paiva, L. M. (2010). Determination of carcass and body fat composition of grazing crossbred bulls using body measurements. J. Anim. Sci., 88(4), 1442–1453. https://doi.org/10.2527/jas.2009-1919

Flores–Mancheno, C. I., Roca–Arguelles, M., Tejedor–Arias, R., Salgado–Tello, I. P., & Villegas–Soto, N. R. (2015). Contenido de ácidos grasos en carne de cuy. Ciencia y Agricultura,12(2), 83–90. https://www.redalyc.org/pdf/5600/560058661008.pdf

Folch, J., Lees, M., & Sloane–Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

Garg, M. L., Scbokova. E., Thomson, A. B. R., &Clandinin, M. T. (1988). Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids. Biochemical Journal, 249(2), 351–356. https://doi.org/10.1042/bj2490351

Gericke, A., Gille, U., Trautvetter, T., & Salomon, F. V. (2005). Postnatal growth in male Dunkin – Hartley guinea pigs (Cavia cutlery f. porcellus). Journal Experim. Animal Science, 43(2), 87–99. https://doi.org/10.1016/j.jeas.2004.11.001

Givens, D. I. (2005). The role of animal nutrition in improving the nutritive value of animal-derived foods in relation to chronic disease. Proceedings of the Nutrition Society, 64(3), 395–402. https://doi.org/10.1079/PNS2005448

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new method of determining the value of live contingencies. Philosophical Transactions of the Royal Society of London, 115(1825), 513–583

Guevara, V. J., Rojas, M. S., Carcelén, C. F., & Seminario S. L. (2016). Enriquecimiento de la carne de cuy (Cavia porcellus) con ácidos grasos Omega-3 mediante dietas con aceite de pescado y semillas de sacha inchi (Plukenetia volubilis). Rev Inv Vet Perú, 27(1), 45-50. http://dx.doi.org/10.15381/rivep.v27i1.11450

Hartsook, E., & Hershberger, T. (1963). A simplified method for sampling small animal carcasses for analyses. Journal of Experimental Biology and medicine, 113(4), 973–977. https://doi.org/10.3181/00379727-113-28548

Huamaní, Ñ. G., Zea, M. O., Gutierrez, R. G., & Vílchez, P. C. (2016). Efecto de tres sistemas de alimentación sobre el comportamiento y perfil de ácidos grasos de carcasa de cuy (Cavia porcellus). Rev Inv Vet Perú, 27(3), 486–494. http://dx.doi.org/10.15381/rivep.v27i3.12004

Knap, P.W. (2000). Time trends of Gompertz growth parameters in meat type pigs. Animal Science, 70(1), 39–49. https://doi.org/10.1017/S1357729800051584

Lammers, P. J, Carlson, S. L, Zdorkowski, G. A, & Honeyman, M. S. (2009). Reducing food insecurity in developing countries through meat production: the potential of the guinea pig (Cavia porcellus). Renewable Agriculture and food Systems, 24(2), 155–162. https://doi.org/10.1017/S1742170509002543

Mustafa, A. F., Chavarr, E. C., Mantilla, J. C., Mantilla, J. O., & Paredes, M. A. (2019). Effect of feeding flaxseed on performance, carcass Trait, and meat fatty acid composition of Guinea pigs (Cavia porcellus) under northern Peruvian condition. Tropical Animal Health and Production, 51, 2611–2617. https://doi.org/10.1007/s11250-019-01977-0

Reynaga, R. M. F., Vergara, R. V., Chauca, F. L., Muscari, G. J., & Higaonna, O. R. (2020). Sistemas de alimentación mixta e integral en la etapa de crecimiento de cuyes (Cavia porcellus) de la raza Perú, Andina e inti. Rev Inv Vet. Perú, 31(3). http://dx.doi.org/10.15381/rivep.v31i3.18173

Rosenfeld, S. A. (2008). Delicious guinea pig: seasonality studies and use of fat in the pre-Columbian Andean diet. Quaternary International, 180(1), 127–134. https://doi.org/10.1016/j.quaint.2007.08.011

Sakomura, N. K., Longo, F. A., Oviedo–Rondon, E. O., Boa–Viagem, C. & Ferrando, A. (2005). Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science, 84(9), 1363–1369. https://doi.org/10.1093/ps/84.9.1363

Cantaro Segura, J. L., Sarria Bardales, J. A., & Cayetano Robles, J. L. (2020). Crecimiento de cuatro genotipos de cuyes (Cavia porcellus) bajo dos sistemas de alimentación. Cienc. Tecnol. Agropecuaria, 21 (3), 1–13 https://doi.org/10.21930/rcta.vol21_num3_art:1437

SAS (2005). Statistical Analysis System user’s Guide (Release 9.1). SAS Institute Inc., Cary, North Carolina, USA.

Tedeschi, L. O., Fox, D. G., & Guiroy, P. J. (2004). A decision support system to improve individual cattle management. A mechanistic, dynamic model for animal growth. Agric. Syst., 79(2), 171–204.

Tjorve, K. M. C., & Tjorve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLOS ONE, 12(6), e0178691. https://doi.org/10.1371/journal.pone.0178691

Zomeño, C., Blasco, A. & Hernandez, P. (2010). Influence of genetic line on lipid metabolism traits of rabbit muscle. Journal Animal Science, 88(10), 3419–3427. https://doi.org/10.2527/jas.2009-2778

Downloads

Published

2023-08-29

How to Cite

Hidalgo Lozano, V. ., & Vílchez-Perales, C. (2023). Effect of genotype on chemical composition and fatty acid profile of guinea pig carcass (Cavia porcellus L.). Peruvian Journal of Agronomy, 7(2), 106-116. https://doi.org/10.21704/pja.v7i2.2021