Aplicación de biofertilizantes en la producción de cultivos: Una revisión
DOI:
https://doi.org/10.21704/pja.v6i1.1864Resumen
Los alimentos nutritivos son necesarios para la población en continuo crecimiento junto con los nutrientes para el crecimiento y la producción de las plantas. Los fertilizantes químicos inorgánicos han sido la base y se utilizan en gran medida en los procedimientos actuales de gestión del suelo, lo que supone una grave preocupación para la salud y el medio ambiente. Los biofertilizantes han sido reconocidos como una solución razonable para mejorar la fertilidad del suelo y la producción de los cultivos en la agricultura sostenible. El uso de microorganismos beneficiosos como biofertilizantes ha aumentado su importancia en la industria agrícola debido a su potencial importancia en la seguridad alimentaria y la producción de cultivos sostenibles. Los biofertilizantes pueden ser un valioso componente de una estrategia integral de gestión de nutrientes. En general, los biofertilizantes incorporan fijadores de nitrógeno (fijadores de N), solubilizadores de potasio y fósforo, rizobacterias promotoras del crecimiento (PGPR), hongos endo y ectomicorrícicos, cianobacterias y otros organismos microscópicos beneficiosos. La utilización de biofertilizantes mejora la absorción de nutrientes y agua, el desarrollo de las plantas y su tolerancia a los impactos abióticos y bióticos. Estos futuros fertilizantes biológicos desempeñarían un papel esencial en la producción y la sostenibilidad del suelo y también en la protección del medio ambiente, siendo insumos ecológicos y rentables para los agricultores.
Descargas
Referencias
Ahmad, M., Nadeem, S. M., Naveed, M., & Zahir, Z. A. (2016). Potassium-solubilizing bacteria and their application in agriculture. Potassium Solubilizing Microorganism. Sustainable Agriculture, 293–313. https://doi.org/10.1007/978-81-322-2776-2_21
Ali, A. M., Awad, M. Y., Hegab, S. A., Gawad, A. M., & Eissa, M. A. (2021). Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition, 44, 411–420. https://doi.org/10.1080/01904167.2020.1822399
Almaghrabi, O. A., Abdelmoneim, T., Albishri, H. M., & Moussa, T. A. (2014). Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions. Journal of life science, 11(11), 764–772.
Alves, B. J., Boddey, R. M., Urquiaga, S. (2003). The success of BNF in soybean in Brazil. Plant and Soil, 252:1–9. https://doi.org/10.1023/A:1024191913296
Amin, F., & Hamidreaza, T. (2015). Effect of different biofertilizers on yield and yield components of maize (Zea mays L.). Bull Environment Pharmacology Life Science, 4, 75–79.
Anand, K., Kumari, B., & Mallick, M. (2016). Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 37–40.
Ansari, M. W., Trivedi, D. K., & Sahoo, R. K. (2013). A critical review on fungi mediated plant responses with special emphasis to Piriformis sporaindica on improved production and protection of crops. Plant Physiology and Biochemistry, 70, 403–410. https://doi.org/10.1016/j.plaphy.2013.06.005
Antoun, H. (2012). Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Engineering, 46, 62–67. https://doi.org/10.1016/j.proeng.2012.09.446
Arora, N. K., Tiwari, S., & Singh, R. (2011). Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainableagriculture. Journal of Plant Pathology and Microbiology, 5(2), 1–3. http://dx.doi.org/10.4172/2157-7471.1000229
Asoegwu, C. R., Awuchi, C. G., Nelson, K., Orji, C. G., Nwosu, O. U., Egbufor, U. C., & Awuchi, C. G. (2020). A Review on the Role of Biofertilizers In Reducing Soil Pollution and Increasing Soil Nutrients. Himalayan Journal of Agriculture, 1, 34–38.
Azimi, S. M., Farnia A., Shaban M., & Lak, M. (2013). Effect of different biofertilizers on Seed yield of barley (Hordeum vulgar L.), Bahman cultivar. International Journal of Advanced Biological and Biomedical Research, 1(5), 538–546
Bahadur, I., Maurya, B.R., Kumar, A., Meena, V.S., & Raghuwanshi, R. (2016). Towards the soil sustainability and potassium-solubilizing microorganisms. In V. Meena, B. Maurya, J. Verma, & R. Meena (Eds.), Potassium Solubilizing Microorganisms for Sustainable Agriculture (pp. 255–266). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_18
Barnawal, D., Bharti, N., Pandey, S. S., Pandey, A., Chanotiya, C. S., & Kalra, A. (2017). Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Journal of Physiologia Plantarum, 161, 502–514. https://doi.org/10.1111/ppl.12614
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & Enshasy, H. E. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3). https://doi.org/10.3390/su13031140
Beneduzi, A., Ambrosini, A., & Passaglia, L.M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetic and Molecular Biology, 35, 1044–1051.
Beyranvand, H., Farnia, A., Nakhjavan, S. H., & Shaban, M. (2013). Response of yield and yield components of maize (Zea maize L.) to different biofertilizers. International Journal of Advanced Biological and Biomedical Research, 1(9), 1068-10775.
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66
Bharti, N., Yadav, D., Barnawal, D., Maji, D., & Kalra, A. (2013). Exiguobacterium oxidotolerants, a halotolerant plant growth-promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology, 29, 379–387. https://doi.org/10.1007/s11274-012-1192-1
Bhat, T. A., Ahmad, L., Ganai, M.A., & Khan, O. (2015). Nitrogen fixing biofertilizers; mechanism and growth promotion:Journal of pure and applied microbiology, 9(2), 1675–1690.
Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth–promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4), 1648–1658. https://doi.org/10.1016/j.biortech.2008.09.009
Chatto, M. A., Gandorio, M. Y., & Zargar, M. Y. (1997). Effect of Azospirillum and Azotobacter on growth and quality of knolkhol (Brassica oleracea L. var. gongylodes) Vegetable Science, 24(1), 16–17.
Choudhary, D. K., Sharma, K. P., & Gaur, R. K. (2011) Biotechnological perspectives of microbes in agroecosystems. Biotechnoly Letters, 33, 1905–1910. https://doi.org/10.1007/s10529-011-0662-0
de Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl, 54, 807–816
Desmond, G., & Walter, A.H. (1990). Sweet potato growth and nitrogen content following nitrogen application and inoculation with Azospirillum. Hort. Science, 25(7), 758–659.
Diaz–Zorita M., & Fernandez–Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1), 3–11. https://doi.org/10.1016/j.ejsobi.2008.07.001
Din, M., Nelofer, R., Salman, M., Khan, F. H., Khan, A., Ahmad, M., Jalil, F., Din, J. U., & Khan, M. (2019). Production of nitrogen-fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports, 22, e00323. https://doi.org/10.1016/j.btre.2019.e00323
Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M. N. A., Sampathkumar, P. (2018). Microalgae as Bio-fertilizers for Rice Growth and Seed Yield Productivity. Waste Biomass Valor 9, 793–800. https://doi.org/10.1007/s12649-017-9873-5
El-Halfawi, M., Ibrahim, S., Kandil, H., Niculiţă, M., & Rusu, C. (2010). Influence of elemental sulphur, organic matter, sulfur-oxidizing bacteria and carbonite alone or in combination on cowpea plants and the used soil. Soil Forming Factors and Processes from the Temperate Zone, 9(1), 13–29.
Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects, A review. Journal of soil science and plant nutrition, 17(4), 897–911. http://dx.doi.org/10.4067/S0718-95162017000400005
Ferreira, A. S., Pires, R. R., Rabelo, P. G., Oliveira, R. C., Luz, J. M. Q., & Brito, C. H. (2013). Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Applied Soil Ecology, 72, 103–108. https://doi.org/10.1016/j.apsoil.2013.05.020
Gahan, J., & Schmalenberger, A. (2014). The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in Plant Science, 5, 1–7. https://doi.org/10.3389/fpls.2014.00723
Ghimire, A. R., Nainawasti, A., Shah, T. B., & Dhakal, S. (2021). Effect of different bio-fertilizers onyield of spring rice (Oryza Sativa L.) cv Hardinath-1 in Rajapur Municipality, Bardiya. SAARC Journal of Agriculture, 19(1), 57–69. https://doi.org/10.3329/sja.v19i1.54778
Goteti, P. K., Emmanuel, L. D. A., Desai, S., & Shaik, M. H. A. (2013). Prospective zinc solubilizing bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). International Journal of Microbiology, Article ID 869697. https://doi.org/10.1155/2013/869697
Graham, R. D. (2008). Micronutrient deficiencies in crops and their global significance. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 41–61). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6860-7_2
Guar, A. C. (1985). Phosphate solubilizing microorganisms and their role in plant growth and crop yield. In Proceedings of Soil Biology Symposium (pp. 125–138). Hissar.
Gupta, G., Panwar, J., Akhtar, M. S., & Jha, P. N. (2012). Endophytic nitrogen-fixing bacteria as biofertilizer. Sustainable Agriculture Reviews, 11, 183–221. https://doi.org/10.1007/978-94-007-5449-2_8
Gupta, S. C., & Namdeo, S. L. (1996). Effect of Rhizobium strains on symbiotic traits and grainyield of chickpea. Indian Journal of Pulses Research, 9(1), 94–95.
Halpern, M., Bar-Tal, A., Ofek., M, Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy, 130, 141–174. https://doi.org/10.1016/bs.agron.2014.10.001
Henri, F., Laurette, N. N., Annette, D., John, Q., Wolfgang, M., Franccedil, E., & Dieudonne, N. (2008). Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African Journal of Microbiology Research, 2(7), 171–178.
Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil, 321,117–152
Hussain, A., Zahir, Z. A., Asghar, H. N., Ahmad, M., Jamil, M., Naveed, M., & Akhtar, M. F. U. Z. (2018). Zinc solubilizing bacteria for zinc biofortification in cereals: A step toward sustainable nutritional security. In V. Meena, (Ed.), Role of Rhizospheric Microbes in Soil (pp. 203–227). https://doi.org/10.1007/978-981-13-0044-8_7
Hussain, A., Zahir, Z. A., Ditta, A., Tahir, M. U., Ahmad, M., Mumtaz, M. Z., Hayat, K., & Hussain, S. (2020). Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy, 10(1), 39. https://doi.org/10.3390/agronomy10010039
Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R., Khan, W., Enshasy, H. A. E., Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876
Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 1360. https://doi.org/10.3389/fmicb.2015.01360
Itelima, J. U., Bang, W. I., Onyimba, I. A., Sila, M. D., & Egbere, Oj. (2018). Biofertilizer as a key player in enhancing soil fertility and crop productivity: a review. Direct Research Journal of Agriculture and Food Science, 6(3), 73–83.
Jang, J. H., Woo, S. Y., Kim, S. H., Khaine, I., Kwak, M. J., Lee, H. K., Lee, T. Y., & Lee, W. Y. (2017). Effects of increased soil fertility and plant growth-promoting rhizobacteria inoculation on biomass yield, energy value, and physiological response of poplar in short-rotation coppices in a reclaimed tideland: A case study in the Saemangeum area of Korea. Biomass and Bioenergy, 107, 29–38.
Jeevajyothi, L., Manik, A. K., Pappiah, C. M., & Rajgopalan, R. (1993). Influence of NPK and Azospirillum on yield of cabbage. South Indian Horticulture, 1, 270–272.
Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M., & Bowker, M.A. (2015). Mycorrhizal phenotypes and the law of the minimum. New Phytologist, 205, 1473–1484. https://doi.org/10.1111/nph.13172
Joi, M. B., & Shinde, P. A. (1976). Response of Onion crop to Azotobacerization. Journal of Maharastra Agriculture University, 1, 161–162.
Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy. Article ID 4917256, 7 pages. https://doi.org/10.1155/2019/4917256
Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in Microbiology, 8, 2593. https://doi.org/10.3389/fmicb.2017.02593
Kanaujia, S. P., Tripathy, D., Narayan, R., & Shukla, Y. R. (1999). Influence of phosphorus, potassium, and Rhizobium on green pod yield of pea. Advances in Horticulture & Forestry, 7, 107–112.
Karuthamani, M., Natrajan, S., & Thamburaj, S. (1995). Effect of inorganic and biofertilizers on growth, flowering and yield of pumpkin. South Indian Horticulture, 38, 345–346.
Kashyap, P., Mishra, D., Meena, V.S., Kumar, S., & Kansal, A. (2017). Organic vegetables. In B. Gangwar & N. K. Jat (Eds.), Towards Organic Agriculture (pp. 257–279). Today and Tomorrow’s Printers and Publishers, New Delhi - 110 002, India.
Kaur, G. & Reddy, M. S. (2014). Influence of P–solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology, 61, 35–40. https://doi.org/10.1016/j.ejsobi.2013.12.009
Krey, T., Vassilev, N., Baum, C., & Eichler-Löbermann, B. (2013) Effects of long–term phosphorus application and plant–growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. European Journal of Soil Biology, 55, 124–130. https://doi.org/10.1016/j.ejsobi.2012.12.007
Kumar, A., Dewangan, S., Lawate, P., Bahadur, I., & Prajapati, S. (2019). Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture. In R. Sayyed, N. Arora & M. Reddy (Eds), Plant Growth Promoting Rhizobacteria for Sustainable Stress Management, (pp. 139–155). https://doi.org/10.1007/978-981-13-6536-2_8
Kumari, B., Mallick, M., & Hora, A. (2016). Plant growth-promoting rhizobacteria (PGPR): Their potential for development of sustainable agriculture. In Bioexploitation for Sustainable Agriculture.
Lesueur, D., & Duponnois, R. (2005). Relations between rhizobial nodulation and root colonization of Acacia crassicarpa provenances by an arbuscular mycorrhizal fungus, Glomusintraradices Schenk and Smith or an ectomycorrhizal fungus, Pisolithustinctorius Coker & Couch. Annals of Forest Science 62, 467–474. https://doi.org/10.1051/forest:2005043
Lesueur, D., Ingleby, K., Odee, D., Chamberlain, J., Wilson, J., Manga, T. T., Sarrailh, J. M., & Pottinger, A. (2001). Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. Journal of Biotechnology, 91(2-3), 269–282. https://doi.org/10.1016/S0168-1656(01)00328-5
Malusa, E., Sas-Paszt, L., & Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal, 2012. Article ID 491206. https://doi.org/10.1100/2012/491206
Marks, B. B., Megías, M., Nogueira, M. A., & Hungria, M. (2013). Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express, 3, 21. https://doi.org/10.1186/2191-0855-3-21
Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6), 565–572. https://doi.org/10.1016/j.plaphy.2004.05.009
Meena, V. S., Maurya, B., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils?. Microbiological Research, 169(5-6), 337–347. https://doi.org/10.1016/j.micres.2013.09.003
Meena, V. S., Mishra, P. K., Bisht, J. K., & Pattanayak, A. (2017). Agriculturally Important Microbes for Sustainable Agriculture: Applications in Crop Production and Protection.2
Melchiorre, M., De Luca, M. J., Anta, G. G., Suarez, P., Lopez, C., Lascano, R., & Racca, R. W. (2011). Evaluation of bradyrhizobia strains isolated from field–grown soybean plants in Argentina as improved inoculants. Biology and Fertility of Soils, 47, 81–89. https://doi.org/10.1007/s00374-010-0503-7
Mishra, K. S., & Solanki, R. B. (1996). Effect of Rhizobium inoculation, nitrogen and phosphorus on growth and seed yield of cowpea. Indian Journal of Horticulture, 53(3), 220–224.
Mitter, E. K., Tosi, M., Obregón. D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5, 29. https://doi.org/10.3389/fsufs.2021.606815
Mortimer, P. E., Le Roux, M. R., Pérez-Fernández, M. A., Benedito, V. A., Kleinert, A., Xu, J., & Valentine, A. J. (2013). The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant and soil, 366(1), 229–241.
Naher, U. A., Othman, R., Panhwar, Q. A., & Ismail, M. R. (2015). Biofertilizer for sustainable rice production and reduction of environmental pollution. In: K. Hakeem (Ed.) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_12
Naz, I., Ahmad, H., Khokhar, S. N., Khan, K., & Shah, A. H. (2016). Impact of zinc solubilizing bacteria on zinc contents of wheat. American Eurasian Journal of Agriculture and Environment Science, 16(3), 449–454. https://www.idosi.org/aejaes/jaes16(3)16/3.pdf
Nepali, B., Subedi, S., Bhattarai, S., Marahatta, S., Bhandari, D., & Shrestha, J. (2020). Biofertilizer activity of Trichoderma viride and Pseudomonas fluorescens as growth and yield promoter for maize. Journal of Agricultural Science 2, XXXI, 31,191–195. https://doi.org/10.15159/jas.20.17
Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology, 8, 2580. https://doi.org/10.3389/fmicb.2017.02580
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13 (4), 1868. https://doi.org/10.3390/su13041868
Ordookhani, K., Sharafzadeh, S., & Zare, M. (2011). Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Advances in Environmental Biology, 5(4), 672–677.
Owen, D., Williams, A. P., Griffith, G. W., & Withers, P. J. A. (2015). Use of commercial bio–inoculants to increase agricultural production through improved phosphorus acquisition. Applied Soil Ecology, 86, 41–54. https://doi.org/10.1016/j.apsoil.2014.09.012
Palacios, O. A., Bashan, Y., & De–Bashan, L. E. (2014). Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria–an overview. Biology and Fertility of Soils, 50, 415–432. https://doi.org/10.1007/s00374-013-0894-3
Paramaguru, P., & Natrajan, S. (1993). Effect of Azospirillum on growth and yield of chilli grown under semi dry conditions. South Indian Horticulture, 41, 80–83.
Park, K. H., Lee, C. Y., & Son, H. J. (2009). Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology, 49(2), 222–228. https://doi.org/10.1111/j.1472-765X.2009.02642.x
Patel, D., & Goswami, D. (2020). Phosphorus Solubilization and Mobilization: Mechanisms, Current Developments, and Future Challenge. In: A. Yadav, A. Rastegari, N. Yadav, & D. Kour (Eds.), Advances in Plant Microbiome and Sustainable Agriculture, (pp. 1–20). https://doi.org/10.1007/978-981-15-3204-7_1
Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
Pourbabaee, A. A., Koohbori Dinekaboodi, S., Seyed Hosseini, H. M., Alikhani, H. A., & Emami, S. (2020). Potential application of selected sulfur-oxidizing bacteria and different sources of sulfur in plant growth promotion under different moisture conditions. Communications in Soil Science and Plant Analysis, 51(6), 735–745. https://doi.org/10.1080/00103624.2020.1729377
Prabhu, N., Borkar, S., & Garg, S. (2019). Phosphate solubilization by microorganisms: Overview, mechanisms, applications, and advances. In Surya Nandan Meena, Milind Mohan Naik (Eds.), Advances in Biological Science Research (pp. 161–176). Academic Press. https://doi.org/10.1016/B978-0-12-817497-5.00011-2
Pramanik, P., Goswami, A., Ghosh, S., & Kalita, C. (2019). An indigenous strain of potassium-solubilizing Bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east Indian Journal of Applied Microbiology, 126(1), 215–222. https://doi.org/10.1111/jam.14130
Reed, S. C., Cleveland, C. C., & Townsend, A. R. (2011). Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Revision Ecology Evolution System, 42, 489–512. https://doi.org/10.1146/annurev-ecolsys-102710-145034
Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M., & Murtaza, G. (2020). Bio-fertilizers: Eco-Friendly approach for plant and soil environment. Bioremediation and Biotechnology, 189–213. https://doi.org/10.1007/978-3-030-35691-0_9
Roy, A. (2021). Biofertilizers for Agricultural Sustainability: Current Status and Future Challenges. Current Trends in Microbial Biotechnology for Sustainable Agriculture, Springer, 525–53. https://doi.org/10.1007/978-981-15-6949-4_21
Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhiza symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167(11), 862–869. https://doi.org/10.1016/j.jplph.2010.01.018
Sahu, D., Priyadarshani, I., & Rath, B. (2012). Cyanobacteria–as potential biofertilizer. CIBTech Journal of Microbiology, 1(2-3), 20–26.
Saikia, S. P., Dutta, S. P., Goswami, A., Bhau, B. S., & Kanjilal, P. B. (2010). Role of Azospirillum in the Improvement of Legumes. In: M.S. Khan, J. Musarrat, & A. Zaidi (Eds.), Microbes for Legume Improvement (pp. 389–408). Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_16
Saraswati, R. and Sumarno. (2008). Application of soil microorganisms as a component of agriculture technology. Iptek. Tan. Pangan, 3, 41–58
Sayyed, R., Patel, P., & Shaikh, S. (2015). Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian Journal Experiment Biology, 53, 116–123.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 587. https://doi.org/10.1186/2193-1801-2-587
Sindhu, S., Parmar, P., Phour, M., & Sehrawat, A. (2016). Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. Potassium Solubilizing Microorganisms for Sustainable Agriculture, 171–185. https://doi.org/10.1007/978-81-322-2776-2_13
Singh, D. K., Singh, S. K., Singh, A. K., & Meena, V. S. (2014a). Impact of long term cultivation of lemongrass (Cymbopogon citratus) on post-harvest electro-chemical properties of soil. Annals of Agri-Bio Research, 19(1), 45–48
Singh, M., Dotaniya, M. L., Mishra, A., Dotaniya, C. K., Regar, K. L., & Lata, M. (2016). Role of biofertilizers in conservation agriculture. Conservation Agriculture (pp. 113–134). Springer, Singapore. https://doi.org/10.1007/978-981-10-2558-7_4
Singh, S., Singh, B.K., Yadav, S.M., & Gupta, A.K. (2014b). Potential of biofertilizers in crop production in Indian agriculture. American Journal of Plant Nutrition and Fertilization Technology, 4(2), 33–40. https://doi.org/10.3923/ajpnft.2014.33.40
Smith, S. E, & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104, 1–13. https://doi.org/10.3852/11-229
Subhiah, K. (1991). Studies on the effect of N & Azospirillum in Okra. South Indian Horticulture, 39(1), 37–44.
Sundaravelu, S., & Muthukrishnan, T. (1993). Effect of seed treatment with Azospirillum and GA on the growth and yield of Radish. South Indian Horticulture, 41, 212–213.
Suthar, H., Hingurao, K., Vaghashiya, J., & Parmar, J. (2017). Fermentation: A process for biofertilizer production. Microorganisms for Green Revolution, 229–252.
Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171. https://doi.org/10.3389/fmicb.2017.00171
Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B., & Ramezanian, A. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turkish Journal of Agriculture, 34, 349–359.
Thiiakavathy, S., & Ramaswamy, N. (1999). Effect of inorganic and biofertilizers on yield and quality of parameters of multiple onion. Vegetable Science, 26, 97–98.
Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E., & Niinemets, Ü. (2014). Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles, PLoS ONE, 9(5), https://doi.org/10.1371/journal.pone.0096086
Umesha, S., Singh, P. K., & Singh, R. P. (2018). Microbial biotechnology and sustainable agriculture. In Ram Lakhan Singh, Sukanta Mondal (Eds.), Biotechnology for sustainable agriculture, (pp. 185–205). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812160-3.00006-4
Vaid, S. K., Kumar, B., Sharma, A., Shukla, A., & Srivastava, P. (2014). Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science Plant Nutrition, 14, 889–910. http://dx.doi.org/10.4067/S0718-95162014005000071
Verma, P., Yadav, A. N., Khannam, K. S., Kumar, S., Saxena, A. K., & Suman, A. (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Journal of Basic Microbiology, 56, 44–58. https://doi.org/10.1002/jobm.201500459
Verma, T. S., Thakur, P. C., & Singh, S. (1997). Effect of biofertilizers on vegetable and seed yield of cabbage. Vegetable Science, 24, 1–3.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255(2), 571–586. https://doi.org/10.1023/A:1026037216893
Vidyalakshmi, R., Paranthaman, R., & Bhakyaraj, R. (2009) Sulphur Oxidizing Bacteria and Pulse Nutrition- A Review. World Journal Agriculture and Science, 5(3), 270–278
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiology Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
Wange, S. S. (1995). Response of garlic to combined application of biofertilizers and fertilizers nitrogen. Journal of Soils and Crops, 5, 115–116.
Xiafang, S., & Weiyi, H. (2002). Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta PedologicaSinica, 39(6), 863–871
Yang, J. W., Kloeppe, J. W., & Ryu, C. M. (2019). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4. https://doi.org/10.1016/j.tplants.2008.10.004
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Barsha Sharma, Laxmeshwar Yadav, Meena Pandey, Jiban Shrestha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.