Use of lucuma seed episperm as activated charcoal

Authors

  • Diego Suárez Ramos Ciencias Ambientales, Universidad Nacional Agraria la Molina, 15024, Lima, Perú.
  • Karol Ubillus Ascarza Ingeniería ambiental, Universidad Nacional Agraria la Molina, 15024, Lima, Perú.

DOI:

https://doi.org/10.21704/ac.v83i1.1887

Keywords:

chemical activation, FFG adsorption isotherm, BET adsorption isotherm, lateral adsorption, scanning electron microscopy SEM, circular economy

Abstract

Generation of waste is one of the main problems faced by the agroindustry due to the inadequate management and treatment given. Therefore, it is vital to look for alternatives for the use of waste that can generate added value. The aim of the research was to determine the competence of the episperm lucuma seed (ELS) in the elaboration of activated carbon (AC).  was used as activating agent at two impregnation ratios (0.2 and 0.4g/g episperm) at three temperatures (600, 700 and 800 °C) and three carbonization times (15, 30 and 45 min). 18 treatments were obtained. Methylene blue (MB) dye was used as adsorbate. Chemical kinetics, adsorption capacity and adsorption isotherms of the MB-AC system were studied. The adsorption surface area was determined by the BET isotherm with gaseous nitrogen, the functional groups and morphology of CA were characterized by infrared spectroscopy and scanning electron microscopy, respectively. The results show a kinetics of the pseudo second order, while the adsorption behavior in relation to the MB concentration corresponds to a sigmoidal isotherm which fits the Frumking-Fowler-Guggenheim (FFG) isotherm model. The treatment that presented the highest percentage of adsorption (94.5 %) was AC0.4_600°C30’, obtaining a surface area of 648 m²/g. It is concluded that ELS is suitable for use as activated carbon.

Downloads

Download data is not yet available.

References

• Alvarez-Yanamango, E., Huanqui, G.C., & Huayta, F. (2020). Recovery and characterization of Lucuma seed starch (Pouteria lucuma) with potential industrial application. Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology. DOI: 10.18687/LACCEI2020.1.1.587

• Ayawei, N., Ebelegi A., & Wankasi D. (2017). Modelling an Interpretation of Adsorption Isotherms. Hindawi Journal of Chemistry. 2(33): 1-11. https://doi.org/10.1155/2017/3039817

• Borbor, M. (2017) Variación morfológica y molecular de la lúcuma y su contribución al manejo sustentable de los huertos de Yaután y Laredo. Tesis para optar al grado de doctoris philosophiae en agricultura sustentable, Universidad Nacional Agraria La Molina, Lima Perú. 203pp. Accesado 07/03/2019. http://hdl.handle.net/20.500.12390/1907

• Cury, K., Aguas, Y., Martinez, A., Olivero, R., & Chams L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA. 9 (1): 122-132. DOI: 10.24188/recia.v9.nS.2017.530

• Figueroa, D. A., Moreno, A., & Hormaza A. (2015). Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Revista Ingenierías 14 (27):105-120. DOI:10.22395/rium.v14n26a7

• García, N. (2017) Una nueva generación de carbones activados de altas prestaciones para implicaciones medioambientales”, tesis para optar el grado de doctor en ciencia tecnología de materiales, Universidad de Oviedo, Oviedo, España. 15-33pp.

https://digital.csic.es/bitstream/10261/103330/1/Tesis_Natalia%20Garc%c3%ada%20Asenjo.p

• Guerrero-Castillo P., Reyes S., Acha O., Sepulveda B., & Areche C. (2021). Agro-industrial waste seeds from Peruvian Pouteria lucuma as new source of phytosterols LWT- Food Science and Technology, 144, art. no. 111259. DOI: 10.1016/j.lwt.2021.111259

• Marsh, R & Rodriguez, F. (2006). Activated carbon: Vol. 1st ed. Elsevier Science.

• Inglezakis, V. J., Poulopoulos, S. G., & Kazemian, H. (2018). Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous and Mesoporous Materials, 272 (1):166-176. https://doi.org/10.1016/j.micromeso.2018.06.026

• Jimenez-Lopez, C., Fraga-Corral, M., Carpena, M., García-Oliveira, P., Echave, J., Pereira, A.G., Lourenço-Lopes, C., Prieto M. A., & Simal-Gandara J. (2020). Agriculture waste valorization as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food & Function. DOI: 10.1039/D0FO00937G.

• Lárez, C., Quiñones, V., Suárez, D., & Santos, I. (2011). Preparación de un adsorbente basado en la actodermis de los cladodios de tuna (Opuntia ficus) para la remoción del colorante Safranina. Química Viva. 10(3): 221-232. https://www.redalyc.org/pdf/863/86322531008.pdf

• Li, B., Zhang, Y., Zhang, Y., Zhang, Y., Xu, F., Zhu, K., Huang, C. (2021). A novel underutilized starch resource Lucuma nervosa A.DC seed and fruit. Food Hydrocolloids, 120, art. no. 106934.DOI: 10.1016/j.foodhyd.2021.106934

• Masullo, M., Cerulli, A., Pizza, C., & Piacente, S. (2021). Pouteria lucuma pulp and skin: In depth chemical profile and evaluation of antioxidant activity Molecules, 26 (17), art. no. 5236, DOI: 10.3390/molecules26175236

• Obregón, D. (2012) Estudio comparativo de la capacidad de adsorción de cadmio utilizando carbones activados preparados a partir de semillas de aguaje y de aceituna. Tesis para optar el título de licenciado en química, Universidad Pontificia La Católica, Lima, Perú. 30-81pp. Accesado 20/02/2019.

http://repositorio/handle/20.500.12404/5717

• Paredes-Doig, A.L., Sun-Kou, M.R., Picasso-Escobar, G., & Lazo-Cannata, J.C. (2014). A study of the adsorption of aromatic compounds using activated carbons prepared from chestnut shell. Adsorpt. Sci. Technol. 32 (2): 165-180. DOI: http://dx.doi.org/10.1260/0263- 6174.32. 2-3.165.

• Piccin, J., Dotto, G., & Pinto, L. (2011). Adsorption isotherms and thermochemical data of FDandC RED N° 40 Binding by chitosan. Brazilian Journal of Chemical Engineering. 28 (1): 295-304. DOI:10.1590/S0104-66322011000200014

• Poljsak, N., Kreft, S., & Kocevar, N. (2020). Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology Phytotherapy Research, 34 (2) 254-269. DOI: 10.1002/ptr.6524

• Rojo, L.E., Villano, C.M., Joseph, G., Schmidt, B., Shulaev, V., Shuman, J.L., Lila, M.A., & Raskin, I. (2010). Wound-healing properties of nut oil from Pouteria lucuma Journal of Cosmetic Dermatology, 9(3): 185-195. DOI: 10.1111/j.1473-2165.2010.00509.x

• Sánchez, C. (2018) Caracterización de carbón activado a partir del bambú guadua angustifolia kunth utilizando el método químico. Tesis para optar al título de ingeniero forestal, Universidad Nacional Agraria La Molina, Lima, Perú. 17-32pp Accesado.21/02/2019. http://repositorio.lamolina.edu.pe/handle/20.500.12996/3340

• Shikuku, V. & Mishra, T. (2021) Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two parameter isotherms. Applied Water Science. 11(103):1-9. DOI:10.1007/s13201-021-01440-2

• Vaccari, B. (2015) Influencia de los parámetros temperatura, tiempo y granulometría en las características de carbón activado obtenido en semillas de Tagua Phytelephas macrocarpa. Tesis para optar al título de ingeniero forestal, Universidad Nacional Agraria La Molina, Lima, Perú. 92pp. Accesado 10/03/2019.

• Vera, A. (2014) Obtención y evaluación de carbón activado por método físico a partir de Residuos Carbonizados de Bambú (Guadua angustifolia Kunth) procedentes del distrito La Florida, Cajamarca. Tesis para optar al grado de ingeniero forestal, Universidad Nacional Agraria La Molina, Lima, Perú. 73pp. Accesado 05/03/2019.

Downloads

Published

2022-07-31

Issue

Section

Artículo original / Research Article

How to Cite

Suárez Ramos, D. ., & Ubillus Ascarza, K. . (2022). Use of lucuma seed episperm as activated charcoal. Anales Científicos, 83(1), 97-108. https://doi.org/10.21704/ac.v83i1.1887

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>